Role of Static and Dynamic Obstacles in the Protein Search for Targets on DNA.

نویسندگان

  • Alexey Shvets
  • Maria Kochugaeva
  • Anatoly B Kolomeisky
چکیده

Protein search for specific sequences on DNA marks the beginning of major biological processes. Experiments indicate that proteins find and recognize their targets quickly and efficiently. Because of the large number of experimental and theoretical investigations, there is a reasonable understanding of the protein search processes in purified in vitro systems. However, the situation is much more complex in live cells where multiple biochemical and biophysical processes can interfere with the protein search dynamics. In this study, we develop a theoretical method that explores the effect of crowding on DNA chains during the protein search. More specifically, the role of static and dynamic obstacles is investigated. The method employs a discrete-state stochastic framework that accounts for most relevant physical and chemical processes in the system. Our approach also provides an analytical description for all dynamic properties. It is found that the presence of the obstacles can significantly modify the protein search dynamics. This effect depends on the size of the obstacles, on the spatial positions of the target and the obstacles, on the nature of the search regime, and on the dynamic nature of the obstacles. It is argued that the crowding on DNA can accelerate or slow down the protein search dynamics depending on these factors. A comparison with existing experimental and theoretical results is presented. Theoretical results are discussed using simple physical-chemical arguments, and they are also tested with extensive Monte Carlo computer simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks

Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...

متن کامل

Dynamic Modeling and Controller Design of Distribution Static Compensator in a Microgrid Based on Combination of Fuzzy Set and Galaxy-based Search Algorithm

This paper  presents a nonlinear controller for a Distribution Static Compensator (DSTATCOM) of a microgrid incorporating the Distributed Generation (DG) units. The nonlinear control has been designed based on partial feedback linearization theory and Proportional-Integral-Derivative (PID) controllers try to adjust the voltage and trace the output. This paper has proposed a combination of a fuz...

متن کامل

A Framework for Adapting Population-Based and Heuristic Algorithms for Dynamic Optimization Problems

In this paper, a general framework was presented to boost heuristic optimization algorithms based on swarm intelligence from static to dynamic environments. Regarding the problems of dynamic optimization as opposed to static environments, evaluation function or constraints change in the time and hence place of optimization. The subject matter of the framework is based on the variability of the ...

متن کامل

Computational Identification of Micro RNAs and Their Transcript Target(s) in Field Mustard (Brassica rapa L.)

Background: Micro RNAs (miRNAs) are a pivotal part of non-protein-coding endogenous small RNA molecules that regulate the genes involved in plant growth and development, and respond to biotic and abiotic environmental stresses posttranscriptionally.Objective: In the present study, we report the results of a systemic search for identifi cation of new miRNAs in B. rapa using homology-based ...

متن کامل

Challenges to Design and Develop of DNA Aptamers for Protein Targets. I. Optimization of Asymmetric PCR for Generation of a Single Stranded DNA Library

Aptamers, or single stranded oligonucleotides, are produced by systematic evolution of ligands by exponential enrichment, abbreviated as SELEX. In the amplification and regeneration step of SELEX technique, dsDNA is conversed to ssDNA. Asymmetric PCR is one of the methods used for the generation of ssDNA. The purpose of this study was to design a random DNA library for selection of aptamers wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 120 26  شماره 

صفحات  -

تاریخ انتشار 2016